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Transverse Sensitivity

Transverse sensitivity in a strain gage refers to the behavior 
of the gage in responding to strains which are perpendicular 
to the primary sensing axis of  the gage. Ideally, it would 
be preferable if  strain gages were completely insensitive 
to transverse strains. In practice, most gages exhibit some 
degree of transverse sensitivity; but the effect is ordinarily 
quite small, and of the order of several percent of the axial 
sensitivity.

In plane wire strain gages, transmission of strain into the 
wire from a direction perpendicular to the wire axis is nearly 
negligible. As a result, the transverse sensitivity of  these 
gages is due almost entirely to the fact that a portion of the 
wire in the end loop lies in the transverse direction. Because 
of  this, the sign of  the transverse sensitivity for a plane 
wire gage will always be positive, and the magnitude of the 
effect can be calculated quite closely from the geometry of 
the grid. This statement does not apply to the small “wrap-
around” gages having the wire wound on a flattened core. 
Such gages often exhibit negative transverse sensitivities.

In foil strain gages, on the other hand, the transverse 
sensitivity arises from much more complex phenomena, 
and it is affected by almost every aspect of grid design and 
gage construction. In addition to end loop effects, the foil 
gridlines, having a large ratio of  width to thickness, are 
strained significantly by transverse strains. The magnitude 
of  transverse strain transmission into the gridlines is 
determined by the relative thicknesses and elastic moduli of 
the backing and foil, by the width-to-thickness ratio of the foil 
gridlines, and, to a lesser degree, by several other parameters, 
including the presence or lack of an encapsulating layer over  
the grid.

Depending upon the foil material and its metallurgical 
condition, the contribution to transverse sensitivity from 
the transmission of transverse strain into the gridlines can 
be either positive or negative. Because of this, the overall 
transverse sensitivity of a foil strain gage can also be either 
positive or negative. While the transverse sensitivity of  a 
foil gage is thus subject to a greater degree of control in the 
design of the gage, the compromises necessary to optimize 
all aspects of gage performance generally limit the attainable 
reduction in transverse sensitivity.

Errors Due to Transverse Sensitivity

Errors in strain indication due to transverse sensitivity are 
generally quite small since the transverse sensitivity itself  
is small. However, in biaxial strain fields characterized by 
extreme ratios between principal strains, the percentage 
error in the smaller strain can be very great if  not corrected 
for transverse sensitivity. On the other hand, in the particular 
case of uniaxial stress in a material with a Poisson’s ratio of 
0.285, the error is zero because the gage factor given by the 
manufacturer was measured in such a uniaxial stress field 
and already includes the effect of the Poisson strain. It is 
important to note that when a strain gage is used under any 
conditions other than those employed in the gage-factor 
calibration, there is always some degree of  error due to 
transverse sensitivity. In other words, any gage which is: (a) 
installed on a material with a different Poisson’s ratio; or 
(b) installed on steel, but subjected to other than a uniaxial 
stress state; or (c) even installed on steel with a uniaxial 
stress state, but aligned with other than the maximum 
principal stress, exhibits a transverse-sensitivity error which 
may require correction.

The historical practice of  quoting gage factors which, in 
effect, mask the presence of transverse sensitivity, and which 
are correct in themselves for only a specific stress field in a 
specific material, is an unfortunate one. This approach has 
generally complicated the use of strain gages, while leading 
to errors and confusion. Although the uniaxial stress field is 
very common, it is not highly significant to the general field 
of experimental stress analysis. There is no particular merit, 
therefore, in combining the axial and transverse sensitivities 
for this case.

In general, then, a strain gage actually has two gage factors, 
Fa and Ft, which refer to the gage factors as determined in 
a uniaxial strain field (not uniaxial stress) with, respectively, 
the gage axes aligned parallel to and perpendicular to the 
strain field. For any strain field, the output of the strain gage 
can be expressed as:

	 ∆R
R

F Fa a t t= +ε ε 	 (1)	

where:      εa, εt = �strains parallel to and perpendicular to 
the gage axis, or the gridlines in the gage.

	    Fa = axial gage factor.

	    Ft = transverse gage factor.
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Or,

	
∆R
R

F Ka a t t= +( )ε ε 	 (2)

where:         K
F
Ft
t

a
= = �transverse sensitivity coefficient, 

referred to from here on as the 
“transverse sensitivity”.

When the gage is calibrated for gage factor in a uniaxial 
stress field on a material with Poisson’s ratio, ν0,

                     ε ν εt a= − 0

Therefore,

	
∆R
R

F Ka a t a= −( )ε ν ε0

or,

	
∆R
R

F Ka t a= −( )1 0ν ε 	 (3)

The strain gage manufacturers commonly write this as:

	

∆R
R

F= ε
		

(3a)

where:	         �F = manufacturer’s gage factor, which is 
deceptively simple in appearance, since, in 
reality:

                     F F Ka t= −( )1 0ν 	 (4)

Furthermore, ε is actually εa, the strain along the gage axis 
(and only one of  two strains sensed by the gage during 
calibration) when the gage is aligned with the maximum 
principal stress axis in a uniaxial stress (not uniaxial strain) 
field, on a material with ν0 = 0.285. Errors and confusion 
occur through failure to fully comprehend and always 
account for the real meanings of  F and ε as used by the 
manufacturers.

It is imperative to realize that for any strain field except that 
corresponding to a uniaxial stress field (and even in the latter 
case, with the gage mounted along any direction except the 
maximum principal stress axis, or on any material with 
Poisson’s ratio other than 0.285), there is always an error 
in strain indication if  the transverse sensitivity of the strain 
gage is other than zero. In some instances, this error is small 
enough to be neglected. In others, it is not. The error due to 
transverse sensitivity for a strain gage oriented at any angle, 
in any strain field, on any material, can be expressed as:

	 n

K

K

t
t

a

t
ε

ε
ε

ν

ν
=

+






−
×

0

1
100

0
	

(5)

where:	 nε	 =	� the error as a percentage of the actual 
strain along the gage axis.

	 ν0	 =	 the Poisson’s ratio of the material on 
			�   which the manufacturer’s gage factor, F, 

was measured (usually 0.285).

              εa, εt	 = ��respectively, the actual strains parallel and 
perpendicular to the primary sensing axis 
of the gage.*

From the above equation, it is evident that the percentage 
error due to transverse sensitivity increases with the absolute 
values of Kt and εt/εa, whether these parameters are positive 
or negative. Equation (5) has been plotted in Figure 1 for 
convenience in judging whether the magnitude of the error 
may be significant for a particular strain field. Figure 1 also 
yields an approximate rule-of-thumb for quickly estimating 
the error due to transverse sensitivity – that is,

	

n Kt
t

a
ε

ε
ε

≈ x (percent)100

As Equation (5) shows, this approximation holds quite well 
as long as the absolute value ε t /εa  is not close to ν0. For an 
example, assume the task of measuring Poisson (transverse) 
strain in a uniaxial stress field. In this case, the Poisson strain 
is represented by εa , the strain along the gage axis, and the 
longitudinal strain in the test member by ε t , since the latter 
is transverse to the gage axis (see sketch and footnote below).

              

ε νε

ε ε
ν

a t

t a

= −

= − 1

εt

εaP P

*�Subscripts (a) and (t) always refer to the axial and transverse direc-
tions with respect to the gage (without regard to directions on the 
test surface), while subscripts (x) and (y) refer to an arbitrary set of 
orthogonal axes on the test surface, and subscripts ( p) and (q) to the 
principal axes.
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If  the test specimen is an aluminum alloy, with ν = 0.32, then 
εt/εa = –1/ν = –3.1. Assuming that the transverse sensitivity 
of  the strain gage is –3% (i.e., Kt = –0.03*), the rule of 
thumb gives an approximate error of  +9.3%. The actual 
error, calculated from Equation (5), is +8.5%.

Correcting for Transverse Sensitivity

The effects of  transverse sensitivity should always be 
considered in the experimental stress analysis of a biaxial 
stress field with strain gages. Either it should be demonstrated 
that the effect of transverse sensitivity is negligible and can 
be ignored, or, if  not negligible, the proper correction should 
be made. Since a two- or three-gage rosette will ordinarily 
be used in such cases, simple correction methods are given 
here for the two-gage 90-degree rosette, the three-gage 
rectangular rosette, and the delta rosette. Unless otherwise 
noted, these corrections apply to rosettes in which the 
transverse sensitivities of  the individual gage elements in 
the rosettes are equal to one another, or approximately so. 
Generalized correction equations for any combination of 
transverse sensitivities are given in the Appendix.

Consider first the two-gage 90-degree rosette, with the 
gage axes aligned with two orthogonal axes, x and y, on 
the test surface. When using this type of  rosette, the x 
and y axes would ordinarily be the principal axes, but this 
need not necessarily be so. The correct strains along any 
two perpendicular axes can always be calculated from the 
following equations in terms of the indicated strains along 
those axes:

	 ε
ν ε ε

x
t x t y

t

K K

K
=

−( ) −( )
−

1

1
0

2

ˆ ˆ
	 (6)

 

	 ε
ν ε ε

y
t y t x

t

K K

K
=

−( ) −( )
−

1

1
0

2

ˆ ˆ

	
(7)

where:  

          ˆ ˆε εx a=
1

=	� the indicated (uncorrected) strain from 
gage no. 1.

        ˆ ˆε εy a=
2
	 =	� the indicated (uncorrected) strain from	

gage no. 2.

            ε εx y, 	=	� corrected strains along the x and y axes, 
respectively.

The (1–Kt
2) term in the denominators of  Equations (6) 

and (7) is generally in excess of 0.995, and can be taken as 
unity:

	 ε ν ε εx t x t yK K= −( ) −( )1 0 ˆ ˆ 	 (6a)

	 ε ν ε εy t y t xK K= −( ) −( )1 0 ˆ ˆ
	

(7a)

Data reduction can be further simplified by setting the gage 
factor control on the strain-indicating instrumentation at Fa 
instead of F, the manufacturer’s gage factor. Since,

	
F

F
Ka =

−1 0 1ν

Equations (6a) and (7a) can be rewritten:

	
ε ε ε

ε ε ε

x x t y

y y t x

K

K

=

=

ˆ̂ – ˆ̂

ˆ̂ – ˆ̂

	

					     (6b)

					     (7b)

where:	

             
ˆ̂ , ˆ̂ε εx y = �strains as indicated by  

instrumentation with 
gage factor control set at 

Figure 1

εt /εa = 5
–5 = εt /εa

* �For substitution into any equation in this Tech Note, Kt must always 
be expressed decimally. Thus, the value of Kt (in percent) from the 
gage package data sheet must be divided by 100 for conversion to its 
decimal equivalent.
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F
Kt1 0− ν

As an alternative to the preceding methods, a quick graphical 
correction for the transverse sensitivity can be made through 
the use of  Figure 2. To use the graph, the first step is to 
calculate:

	

ˆ
ˆ

ˆ
ˆ

ˆ

ˆ

ˆ
ˆ

ε
ε

ε
ε

ε
ε

ε

t

a

y

x

t







= =
1

2

1
(Gage No. 1)

εε
ε
ε

ε
εa

x

y







= =
2

1

2

ˆ
ˆ

ˆ
ˆ

(Gage No. 2)

Having done this, it is only necessary to enter the graph 
at the approximate value of  Kt, move upward to the line 
(or interpolated line) representing the observed (indicated) 
strain ratio, ˆ / ˆε εt a( ) for that particular rosette element, and 
horizontally to the vertical scale on the left to read the 
correction factor.

Then,	        ε ε εx C= =1 1 1̂

Similarly,         ε ε εy C= =2 2 2ˆ

Following is a numerical example utilizing first Equations 
(6a) and (7a), and then Figure 2.

Assume that the indicated strains for rosette elements (1) 
and (2) along the x and y axes are, respectively:

	        

ˆ

ˆ

ε µε

ε µε
1

2

1530

920

= +

= +

Assume also that Kt = –0.06. Substituting into Equations 
(6a) and (7a), with ν0 = 0.285,

    εx = (1 + 0.285 x 0.06) (1530 + 0.06 x 920) = 1612με

    εy  = (1 + 0.285 x 0.06) (920 + 0.06 x 1530) = 1029με

For use with the correction graph, Figure 2,

	

ˆ
ˆ

. .

ˆ
ˆ

ε
ε

ε
ε

t

a

t

a







= = ≈







1

920
1530

0 601 0 6

22

1530
920

1 663 1 65= = ≈. .

Following the line for Kt = –0.06 upward, interpolating 
the location of ˆ / ˆε εt a( )1 = 0.6, and ˆ / ˆε εt a( ) 2 = 1.65, and 
reading the respective values of the correction factor,

	        C1 = 1.06; C2 = 1.12

From which,

                        

ε ε µε

ε ε
x x

y y

C

C

= = =

= = =

1

2

1 06 1530 1620

1 12 920

ˆ .

ˆ .

x

x 11030µε

Correction For Shear Strain

A two-gage, 90-degree rosette, or “T”-rosette, is sometimes 
used for the direct indication of shear strain. It can be shown 
that the shear strain along the bisector of the gage axes, is, 
in this case, numerically equal to the difference in normal 
strains on these axes. Thus, when the two gage elements of 
the rosette are connected in adjacent arms of a Wheatstone 
bridge, the indicated strain is equal to the indicated shear 
strain along the bisector, requiring at most correction for 

Figure 2

ˆ / ˆε εt a5 =

= –5ˆ / ˆε εt a

Kt IN%
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the error due to transverse sensitivity. The latter error can 
be corrected for very easily if  both gages have the same 
transverse sensitivity, since the error is independent of the 
state of strain. The correction factor for this case is:

	 C
K
K

t

t
γ

ν= −
−

1
1

0

	
(8)

The actual shear strain is obtained by multiplying the 
indicated shear strain by the correction factor. Thus,

                     γ γ ε ε ν ε εγ γ= = −( ) = −
−

−( )C C
K
Kx y

t

t
x yˆ ˆ ˆ ˆ ˆ1

1
0

For convenience, the shear strain correction factor is plotted 
in Figure 3 against Kt, with ν0 = 0.285. Since this correction 
factor is independent of  the state of  strain, it can again 
be incorporated in the gage factor setting on the strain-
indicating instrumentation if  desired. This can be done by 
setting the gage factor control at:

 
	 F F

K
K
t

t
γ ν

= −
−
1
1 0 	

(9)

With this change, the strain indicator will indicate the actual 
shear strain along the bisector of  the gage axis, already 
corrected for transverse sensitivity in the strain gages.

Three-Gage Rectangular (45°) Rosette

When the directions of  the principal axes are unknown, 
three independent strain measurements are required to 
completely determine the state of strain. For this purpose, 
a three-gage rosette should be used, and the rectangular 
rosette is generally the most convenient form.

If  the transverse sensitivity of  the gage elements in the 
rosette is other than zero, the individual strain readings will 
be in error, and the principal strains and stresses calculated 
from these data will also be incorrect.

Correction for the effects of  transverse sensitivity can be 
made either on the individual strain readings or on the 
principal strains or principal stresses calculated from these. 
Numbering the gage elements consecutively, elements (1) 
and (3) correspond directly to the two-gage, 90-degree 
rosette, and correction can be made with Equations (6) and 
(7), or (6a) and (7a), or (by properly setting the gage factor 
control on the strain indicator) with Equations (6b) and (7b). 
The center gage of the rosette requires a special correction 
relationship since there is no direct measurement of  the 
strain perpendicular to the grid. The correction equations 
for all three gages are listed here for convenience:

	     

ε ν ε ε

ε ν ε

1
0
2 1 3

2
0
2 2

1

1

1

1

= −
−

−( )

= −
−

−

K

K
K

K

K

t

t
t

t

t

ˆ ˆ

ˆ KK

K

K
K

t

t

t
t

ˆ ˆ ˆ

ˆ ˆ

ε ε ε

ε ν ε ε

1 3 2

3
0
2 3 1

1

1

+ −( ) 

= −
−

−[[ ]

		
						      (10)

						      (11)

						      (12)
 

 where:

        ˆ , ˆ , ˆε ε ε1 2 3 =	�indicated strains from the respective gage 
elements.

        
ε ε ε1 2 3, , = corrected strains along the gage axes.

It should be noted that Equations (10), (11), and (12) are 
based upon the assumption that the transverse sensitivity 
is the same, or effectively so in all gage elements, as it is in 
stacked rosettes. This may not be true for planar foil rosettes, 

Figure 3
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ν
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since the individual gage elements do not all have the same 
orientation with respect to the direction in which the foil was 
rolled. It is common practice, however, to etch the rosette in 
a position of symmetry about the foil rolling direction, and 
therefore the transverse sensitivities of gage elements (1) and 
(3) will be nominally the same, while that of element (2) may 
differ. Correction equations for rosettes with nonuniform 
transverse sensitivities among the gage elements are given in 
the Appendix.

Delta Rosettes

A delta strain gage rosette consists of three gage elements 
in the form of an equilateral triangle or a “Y” with equally 
spaced branches. The delta rosette offers a very slight 
potential advantage over the three-gage rectangular rosette in 
that the lowest possible sum of the strain readings obtainable 
in a particular strain field is somewhat higher than for a 
three-gage rectangular rosette. This is because the three gage 
elements in the delta rosette are at the greatest possible angle 
from one another. However, the data reduction for obtaining 
the principal strains or correcting for transverse sensitivity 
is also more involved and lengthy than for rectangular 
rosettes.

As in the case of rectangular rosettes, plane foil delta rosettes 
are manufactured symmetrically with respect to the rolling 
direction of  the foil. Thus, two of  the gage elements will 
ordinarily have the same nominal transverse sensitivity, and 
third may differ. Correction equations for this condition are  
given in the Appendix. In the stacked delta rosette, all three 
gages have the same nominal sensitivity.

The individual strain readings from a delta rosette can 
be corrected for transverse sensitivity with the following 
relationships when a single value of Kt can be used for the 
transverse sensitivity:

	
ε ν ε ε ε1 2 1 2 3

1
1

1
3

2
3

0= −
−

+



 +( )K

K
K

Kt

t

t
tˆ – ˆ ˆ





= −
−

+



 +ε ν ε ε2 2 2 3

1
1

1
3

2
3

0K
K

K
Kt

t

t
tˆ – ˆ ˆ̂

ˆ –

ε

ε ν ε

1

3 2 3
1
1

1
3

2
3

0

( )





= −
−

+





K
K

Kt

t

t KKt ˆ ˆε ε1 2+( )





		
						      (13)

						    
(14)

						      (15)

		

As before, simplification can be achieved by treating  
(1 – Kt

2) as unity, and by incorporating the quantity  
(1 – ν0Kt) into the gage factor setting for the strain 
instrumentation. When doing this, the gage-factor control  
is set at:

	
F

F
Ka
t

= −1 0ν

Correction of Principal Strains

With any rosette, rectangular, delta, or otherwise, it is 
always possible (and often most convenient) to calculate 
the indicated principal strains directly from the completely 
uncorrected gage readings, and then apply corrections to 
the principal strains. This is true because of  the fact that 
the errors in principal strains due to transverse sensitivity 
are independent of  the kind of  rosette employed, as long 
as all gage elements in the rosette have the same nominal 
transverse sensitivity. Since Equations (6) and (7) apply to 
any two indicated orthogonal strains, they must also apply 
to the indicated principal strains. Thus, if  the indicated 
principal strains have been calculated from strain readings 
uncorrected for transverse sensitivity, the actual principal 
strains can readily be calculated from the following:

					     (16)

					     (17)

	

ε ν ε ε

ε ν ε

p
t

t
p t q

q
t

t
q

K

K
K

K

K

= −
−

−( )

= −
−

−

1

1

1

1

0

0

2

2

ˆ ˆ

ˆ KKt pε̂( )
	

Furthermore, Equations (16) and (17) can be rewritten to 
express the actual principal strain in terms of the indicated 
principal strain and a correction factor. Thus,

					   
(18)

					   
(19)

	

ε ε ν ε
εp p

t

t
t

q

p

K

K
K= −

−






−
















ˆ
ˆ

ˆ
1

1
10

2







= −
−







−








ε ε ν ε

εq q
t

t
t

p

q

K

K
Kˆ

ˆ

ˆ
1

1
10

2 












Since Equations (18) and (19) are the same relationship used 
to plot the correction graph of Figure 2, this graph can be 
used directly to correct indicated principal strains by the 
procedure described earlier, merely noting that:

	
ˆ
ˆ

ˆ

ˆ
ε
ε

ε
ε

t

a

q

p
= 	 when correcting ε̂ p
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and

	
ˆ
ˆ

ˆ

ˆ
ε
ε

ε
ε

t

a

p

q
=  	 when correcting ε̂q

In fact, the indicated strains from three gages with any 
relative angular orientation define an “indicated” Mohr’s 
circle of strain. When employing a data-reduction scheme 
that produces the distance to the center of  Mohr’s circle 
of strain, and the radius of the circle, still another simple 
correction method is applicable. To correct the indicated 
Mohr’s circle to the actual Mohr’s circle, the distance to 
the center of  the indicated circle should be multiplied by  
(1 – ν0Kt)/(1 + Kt), and the radius of  the circle by  
(1 – ν0Kt)/(1 - Kt). The maximum and minimum principal 
strains are the sum and difference, respectively, of  the 
distance to the center and the radius of  Mohr’s circle  
of strain.
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APPENDIX

The following relationships can be used to correct for transverse sensitivity when the gage elements in a rosette do not all 
have the same value of Kt. In each case, ν0 is the Poisson’s ratio of the material on which the manufacturer’s gage factor was 
measured (usually 0.285).

Two-Gage, 90-Degree rosette
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where: 	

             
ˆ , ˆε ε1 2 	=	� indicated strains from gages (1) and (2), 

uncorrected for transverse sensitivity.

          Kt1
, Kt2

	=	 transverse sensitivities of gages (1) and (2).

             ε ε1 2, 	=	 actual strains along gage axes (1) and (2).

Three-Gage Rectangular (45-Degree) Rosette
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When the transverse sensitivities of the orthogonal gages (1) and (3) are nominally the same, let 

                  Kt1 = Kt3
 = Kt13

 
(20)

 

(21)

(22)

(23)

(24)
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Then:
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where:	

            ˆ , ˆ , ˆε ε ε1 2 3 = �indicated strains from gages (1), (2), and (3), uncorrected for transverse sensitivity.

       Kt1, Kt2
, Kt3

  = transverse sensitivities of gages (1), (2), and (3).

	  Kt13
  = transverse sensitivity of orthogonal gages (1) and (3).

            ε ε ε1 2 3, , = actual strains along gage axes (1), (2), and (3).

Delta Rosette
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When two of the gages, for example, (1) and (3), have the same nominal transverse sensitivity, 
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The subscripts in Equations (28) through (33) have the same significance as in Equations (22) through (27), except that the two 
gages with common transverse sensitivity, Kt13

, are not orthogonal.

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)




