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Micro-Measurements

Design Considerations for  
Diaphragm Pressure Transducers
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Strain Gages and Instruments

The following notes are intended only as general guidance 
for the preliminary design of diaphragm pressure 
transducers. The actual design and development process 
involves arriving at the best compromise (relative to 
the performance specifications) of sensitivity, linearity, 
and frequency response, as determined primarily by the 
diaphragm diameter and thickness.

The formulas included here are based upon the following 
assumptions:

•	 Uniform diaphragm thickness

•	 Small deflections

•	 �Infinitely rigid clamping around the diaphragm 
periphery

•	 Perfectly elastic behavior

•	 �Negligible stiffening and mass effects due to the 
presence of the strain gage on the diaphragm.

To the degree that the actual transducer fails to satisfy all 
of the above assumptions, the formulas will be inaccurate. 
Because of this, the formulas should be used only in the 
initial stages of transducer development to determine the 
approximate proportions of the transducer.

Sensitivity

The strain distribution in a rigidly clamped diaphragm 
under uniform pressure distribution is shown in Figure 1.

The radial and tangential strains at the center of the 
diaphragm are identical, and expressed by:
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where:

U.S.  
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Units

Metric  
(Si)  

Units

	  P	=	Pressure psi Pa

	 Ro	=	Diaphragm Radius in mm

	   t	=	Diaphragm thickness in mm

	   ν	=	Poisson’s ratio dimensionless

	  E	=	Modulus of elasticity psi Pa
 
The radial strain decreases rapidly as the radius increases, 
becoming negative, and (at the edge) equal to twice the 
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Fig.1 – Strain distribution in clamped diaphragm
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center strain. The tangential strain decreases to zero at the 
periphery of the diaphragm. Thus,
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Diaphragm Strain Gages

Micro-Measurements manufactures two different strain 
gage configurations (Figure 2a and b) for use on diaphragm 
pressure transducers.

(a) Circular Pattern

(b) Linear Pattern

Fig. 2 – Micro-Measurements  
diaphragm strain gages for pressure transducers.

The traditional circular pattern as shown in Figure 2a has 
been designed to take advantage of the orientation of the 
tangential and radial strain fields described above. Taking 
account of the sign difference in the strains sensed by 
the radial and tangential grid elements, and dividing the 
elements into symmetrical pairs, permits incorporating a 
full bridge into a single strain gage. In terms of optimizing 
the strain gage design, the solder tabs have been located in 
a region of low strain.

The linear gage configuration shown in Figure 2b functions 
in the same manner as the circular version with only minor 
differences in total gage output (eo)1. The main advantages 
of using a linear design are ease of installation (less surface 
area to bond) and generally lower gage cost.

For either the circular or linear patterns, averaging the 
strain over the region covered by each sensing element 
(assuming a gage factor of 2.0), and averaging the outputs 
of all sensing elements, the total gage output (eo) in 
millivolts per volt can be expressed approximately by the 
following formula:
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Linearity

The preceding equations for diaphragm strain and output 
indicate that the output is proportional to the applied 
pressure. This precise linearity applies, however, only 
for vanishingly small def lections. In the case of finite 
deflections, the diaphragm pressure transducer is inherently 
nonlinear, and becomes more so, as deflection increases. 
As a general rule, the deflection of the diaphragm at the 
center must be no greater than the diaphragm thickness; 
and, for linearity in the order of 0.3%, should be limited to 
one quarter the diaphragm thickness.

Following is the formula for diaphragm deflection, based 
upon small-deflection theory:
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where:		 Yc = Center deflection, in (mm)

Frequency Response

In order to faithfully respond to dynamic pressures, the 
resonant frequency of the diaphragm must be considerably 
higher than the highest applied frequency. Depending 
strongly upon the degree of damping in the diaphragm 
strain gage assembly and in the fluid in contact with the 
diaphragm, the resonant frequency should be at least three 
to five times as high as the highest applied frequency. The 
subject of proper design for accurate dynamic response is 
too complex and extensive to be included here. However, 
for transducers subject to high frequencies or to sharp 
pressure wave fronts involving high-frequency components, 
careful consideration must be given to frequency response, 
both in terms of amplitude and phase-shift.
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For reference purposes only, and subject to the assumptions 
listed earlier, the undamped resonant frequency of a 
rigidly clamped diaphragm can be expressed using U.S. 
Customary Units as follows:
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where:	    g= Acceleration of gravity, 386.4 in/sec2

	    γ  = Weight density, lbs/in3

Since in the metric system (SI), density is derived without 
the effect of gravity, Equation (6) must be slightly modified 
when using SI Units as follows:
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where:	   ρ= Mass density, g/cm3

Construction

For maximum accuracy and minimum hysteresis, it is 
common practice to design pressure transducers so that 
the diaphragm is an integral part of the transducer body  
(Figure 3).

Fig. 3 – Typical diaphragm arrangement  
for pressure transducer.

Nominal Diaphragm Diameter

Alternate
Strain Gage
Locations

It is neither necessary nor desirable to try to machine the 
body of the transducer to a sharp internal corner at the 
junction with the diaphragm. The presence of the fillet 
radius, however, is merely one of the ways in which practical 
transducer construction differs from the idealized concept 
corresponding to the earlier assumptions and the equations 
given here. Because of this and the other differences, the 
transducer behavior will necessarily differ from the ideal; 
and experimental development will obviously be required 
to optimize the performance of a particular transducer.

Wiring

As shown in Figure 4a, the internal circuit of the circular 
pattern strain gage has two adjacent corners of the full 
bridge left open. The open bridge corners are left for the 
introduction of zero-shift versus temperature correction, 
and subsequent restoration of zero balance. The linear 
pattern (Figure 4b) has a slightly different circuit 
arrangement but the purpose is the same.

NOTE: See Micro-Measurements Transducer-Class Strain 
Gages Data Book for circular pattern strain gages, and 
linear pattern strain gages for pressure transducers.

References

1.  �For a more detailed analysis of circular versus linear 
diaphragm strain gages, request a copy of Influence 
of Grid Geometry on the Output of Strain-Gage-Based 
Diaphragm Pressure Transducers by R.B. Watson  
(available from Micro-Measurements).

(b) Linear Pattern

Fig. 4 – Internal circuit of Micro-Measurements strain gages 
for diaphragm pressure transducers.
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(a) Circular Pattern
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Assume that a diaphragm pressure transducer is to be designed for a maximum rated pressure of 1000 psi [6.89 MPa],  
under which pressure the output (eo) from a steel diaphragm should be 2 mV/V. If the diaphragm diameter is to be 0.670 in 
[17.02 mm], find the following:

	                 (a)  Diaphragm thickness	                   (c)  Resonant Frequency

	                 (b)  Center deflection     	                   (d)  Approximate maximum diaphragm strain level

Constants*

                                   U.S. Customary					         Metric (SI)

	   P = 1000 lbs/in2	  γ = 0.283 lbs/in3	 P = 6.89 MPa	  Ro= 8.51 mm = 8.51 x 10-3m

	   E = 30 x 106 psi	  g= 386.4 in/sec2	  ν = 0.285	   eo= 2 mV/V = 2 x 10-3V/V

	  Ro= 0.335 in	  eo= 2 mV/V = 2 x 10-3V/V	 E = 207 GPa	   ρ = 7.83 g/cm3 = 7.83 x 103 kg/m3

	    ν = 0.285

(a)	� From Eq. (4), solve for t, 
with eo in units of V/V

	    t = 0.036 in		    t = 9.11 x 10-4m = 0.911 mm

(b)	 From Eq. (5),

	  Yc = 0.0016 in	                                                              Yc = 3.98 x 10-5m = 0.0398 mm

(c)	 From Eq. (6),		  From Eq. (7),

	   fn = 31 766 Hz		  fn = 31 647 Hz

Numerical Example - U.S. Customary and Metric (SI) Units
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(d)	 From Eq. (2),		

	  εR
0
 = –1989 μin/in		   εR

0
 = –2001 μm/m

*The small differences occurring in comparable U.S. Customary and Metric results arise from rounding numbers in both sets of calculations.
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