VISHAY

Vi

MICRO-MEASUREMENTS
®
M:M

Strain Gages and Instruments

Tech Note TN-512-1

Plane-Shear Measurement with Strain Gages

Introduction

Loading a specimen as shown in Figure la produces shear
stresses in the material. An initially square element of the
material, having vertical sides parallel to the direction of
loading, is distorted by these stresses into a diamond shape
as illustrated in Figure 1b, where the distortion is greatly
exaggerated for pictorial clarity. Shear strain is defined as
the magnitude of the change in the initial right angle of the
element at the X-Y origin. That is,

T
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Since shear strain is a change in angle, its natural units are
radians, although it can also be expressed in terms of in/in
[m/m] and percent. From Equation (1), the sign of the shear
strain is positive when the initial right angle of the element
is reduced (@ <m/2). Reversing the directions (sign) of the
shear stresses in Figure 1 causes the initial right angle to
increase and results in a negative shear strain.

Normal strains cause dimensional changes in the grid
of a strain gage, changing its electrical resistance. Pure
shear strains merely rotate the grid, and do not cause the
elongation or contraction necessary to vary the resistance.
Fortunately, shear and normal strains are related through
mechanics principles, allowing strain gages to provide a
direct indication of shear strain. Properly orienting gages
on a strained surface and properly connecting them in a
Wheatstone bridge circuit yields an instrument indication
that is directly proportional to the surface shear strain.

This Tech Note first develops an expression for determining
the surface shear strain in any given direction from two
normal-strain measurements. Next is a discussion of strain
gage and Wheatstone bridge arrangements for direct
indication of shear strains. The shear-strain magnitude
varies sinusoidally around a point in a biaxial strain field.
Since the maximum strain values are usually of primary
interest in stress analysis, Mohr’s strain circle is used to
obtain an expression for the maximum shear strain at a
point in a biaxial strain field. Practical examples of shear
measurement with strain gages are given for both isotropic
materials (e.g., metals) and orthotropic materials such as
wood and fiber-reinforced composites.
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Figure 1 — (a) Shear loads applied to specimen;
(b) enlarged shear deformation of an initially
square element of the material.

Shear Strain from Normal Strains

Consider an array of two strain gages oriented at arbitrarily
different angles with respect to an X-Y coordinate system
which, in turn, is arbitrarily oriented with respect to
the principal axes, as in Figure 2 (following page). From
elementary mechanics of materials, the strains along the
gage axes can be written as:
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Figure 2 — Arbitrarily oriented
strain gages in a biaxial strain field.
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Figure 3 — Defining X axis as bisector of angle
between gage axes, 1,,= (& - &)/sin 2a.
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Subtracting (3) from (2) and solving for ¥,

2(g—&)- (ex - sy)(cos201 — 0826, )
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It is now noticeable that if cos26, =co0s26,, the term in
. and g, vanishes, and

©)

Vo = 2(& - &)
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Since the cosine function is symmetrical about the zero

argument, and about all integral multiples of 7,
c0s26, =cos26, when, for an arbitrary angle ¢,

91+05=—7r/2,0,7r/2,7r...%=92—a ©)

It is thus evident that, if the gage axes are oriented
symmetrically with respect to, say, the X axis (Figure 3),

91=—92 =0

and,
=86 _&-& _§-&
sin26, sin26, sin2o

/}/xy = (7)

The preceding results can be generalized as follows: The
difference in normal strain sensed by any two arbitrarily
oriented strain gagesina uniformstrain field is proportional
to the shear strain along an axis bisecting the strain gage
axes, irrespective of the included angle between the gages.

When the two gages are 90 degrees apart, the denominator
of Equation (7) becomes unity and the shear strain along
the bisector is numerically equal to the difference in
normal strains. Thus, a conventional 90-deg two-gage
rosette constitutes an ideal shear half bridge because the
required subtraction, € — &, is performed automatically
for two gages in adjacent arms of the bridge circuit (Figure
4a). When the gage axes of a two-gage 90-deg rosette
are aligned with the principal axes, the output of the
half bridge is numerically equal to the maximum shear
strain. A full shear-bridge (with twice the output signal) is
then composed of four gages as shown in Figure 4b. The
gages may have any of several configurations, including
the cruciform arrangement and the compact geometry
illustrated in the figure.

Principal Strains

It should be kept in mind that with the shear-bridges
described above, the indicated shear strain exists along
the bisector of any adjacent pair of gage axes, and it is
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Figure 4a — 90-deg rosette for direct
indication of shear strain ,,

Figure 4b — Full shear-bridge.
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Figure 5 — Mohr’s circle for strain used to
determine maximum shear strain.
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Figure 6 — 45-deg rosette used to determine y, and y;, the
shear strains in the @ and directions, respectively.

not possible to determine the maximum shear strain or
the complete state of strain from any combination of
gage outputs unless the orientation of the gage axes with
respect to the principal axes is known. In general, when the
directions of the principal axes are unknown, a three-gage
45-deg rectangular rosette can be used.

Referring to Mohr’s circle for strain (Figure 5) it is apparent
that the two shaded triangles are always identical for a
45-deg rosette, and therefore the maximum shear strain
is equal to the “vector sum” of the shear strains along
any two axes which are 45 degrees apart on the strained
surface. Looking at the 45-deg rosette as shown in Figure
6, it can be seen that the shear strains along the bisectors of
the gage pairs ©-@ and @-O are in fact 45 degrees apart
and, thus, the maximum shear strain is,

Ymax = ?’Az +7’32

and, considering Equation (7),

T )
MAX sin45° sin45°

or,

Ymax = \/E\/(gl —& )2 + (52 —& )2 ®)

and, from Mohr’s circle again, the principal normal
strains are obviously:
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Correction for Transverse Sensitivity

Up to this point, the effect of transverse sensitivity on shear-
strain indication has been ignored. However, correction
for this effect is particularly simple when all strain gage
grids, in either a two-element tee rosette or a three-element
45-deg rectangular rosette, have the same transverse
sensitivity. For such cases, correction consists of merely
multiplying the indicated shear strain by the factor (1-
voK)/I(1-K,), where K, represents the common transverse
sensitivity of the rosette grids and v, is the Poisson’s ratio
of the beam material on which the manufacturer measured
the gage factor of the gages. When the rosette grids do not
have the same transverse sensitivity, the error is a function
of the strain state, and the indicated strain from each
grid must be corrected separately. Relationships for this
purpose are provided in our Tech Note TN-509, “Errors
Due to Transverse Sensitivity in Strain Gages.”
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Figure 7 — Torque transducer based on shear measurement in shaft.

Applications

The area of application for shear strain measurement can
be divided into two categories by the type of material
(isotropic or orthotropic) on which the measurement is
made. As a rule the same categorization also divides the
applications according to the purpose of the measurement.
In the case of materials which can be treated as isotropic
(e.g., the structural metals), the usual reason for measuring
shear strain is to determine the magnitude of an applied
shear stress or load. In contrast, shear strain measurements
on materials such as wood and unidirectionally reinforced
plastics (orthotropic materials) are most commonly made
for the purpose of determining a mechanical property of
the material — namely, its shear modulus or modulus of
rigidity.

An example of shear strain measurement on metals occurs
in shear-buckling studies. When thin panels of steel or
aluminum alloy are loaded in shear, there is ordinarily a
critical load at which the material buckles, forming one or
more waves, generally parallel to the maximum principal
stress direction. In studies evaluating the relative merits of
different structural configurations, a common practice is
to install strain gage rosettes near the center of the panel
to determine the maximum sustainable shear stress or
applied load prior to buckling.

A more common application for shear measurement on
metals is the torque transducer. A cylindrical shaft in
torsion is a case of essentially pure shear, and the applied
torque can be readily determined from two tee rosettes
positioned diametrically on the shaft surface, and oriented
so that their gridlines are at 45 degrees to the shaft axis.
Specially configured tee rosettes (Figure 7) are ordinarily
used for this purpose. When the rosettes are connected to
form a full Wheatstone bridge as indicated in the figure,
the bridge output is doubly sensitive to shaft torque, but
insensitive to bending and axial loads.

The most frequent application of shear strain measurement
in transducers is the shear-beam load cell, indicated
schematically in Figure 8. The load cell consists of a
short, stiff cantilever beam with the material recessed
in one area to form a thin “shear web”. Tee rosettes are
installed on both sides of this web to produce an output
proportional to the vertical shear force on the beam. Since
the vertical shear force is necessarily constant throughout
the length of the beam, the transducer output tends to
be independent of the position (along the beam axis) of
the applied load. The tee rosettes are connected in a full-
bridge circuit as indicated to render the output insensitive
to side loads and off-axis load components on the beam.

P P

Figure 8 — Schematic representation of shear-beam load cell.
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L=76.2mm
h =19.05 mm
d =3.81 mm
R=1.27 mm
w=11.43mm

thickness = 2.54 — 5.08 mm
(12.7 mm max)

Figure 9 - losipescu V-notch specimen for
measurement of shear modulus.

Experimental determination of the shear modulus of a
metal is uncommon, since this property can usually be
calculated with sufficient accuracy from the relationship:
G = E/[2(1+V)]. In orthotropic materials, however, the
shear modulus is an independent mechanical property
which must be measured for each different material. The
usual procedure for doing so is to establish a specimen
geometry and loading system which produces a state
of pure shear with respect to the principal material
directions. Tee rosettes are installed on both sides of the
specimen for determining the shear strain (y) under load.
The corresponding shear stress (7) is obtained from the
measured load divided by the cross-sectional area in shear.

The shear modulus is then calculated from: G|, = 75/,
where the 1-2 subscripts refer to the principal material
directions.

Although many different shear test methods have been
used on composite materials, the losipescu method (Figure
9) is widely favored and is the subject of an ASTM standard
(D 5379). The standard specifies measurement of the shear
strain by tee rosettes installed on the horizontal centerline
of the specimen, while the shear stress is calculated from
the load divided by the cross-sectional area between the
notches. It has been demonstrated, however, that the shear
stress distribution between the notches is far from uniform.
Moreover, the nonuniformity in shear stress distribution
varies markedly according to whether the length of the
specimen is parallel or perpendicular to the major principal
material direction (i.e., a 0-deg or 90-deg specimen). As a
result, it is necessary in each case to adjust the calculated
shear modulus with a different empirical correction
factor.

Actually, the true average shear stress on the cross section
between the notch roots is, by definition, equal to the
load divided by the cross-sectional area. If the average
shear strain over the same area were measured, the true
shear modulus of the material could be obtained directly,
without the need for correction factors. But every strain
gage gives an output corresponding to the average strain
under its grid length. Thus, the appropriate tee rosette for
the Tosipescu specimen is one which spans the complete
depth, from notch root to notch root as shown in Figure
10. When these special shear gages (Micro-Measurements
C032 and CO085 patterns) are employed with the Iosipescu
specimen, the observed shear modulus is the same for the
0-deg and 90-deg specimens (without correction factors), as
it should be for the validity of the mechanics of orthotropic
materials.
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Figure 10 - losipescu specimen with tee rosette shear gages installed on both faces.
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Some Cautions and Limitations

Since shear strains are inferred from normal strain
measurements, accurate results require the same care and
attention to detail as for any other strain measurement
task. There are, however, several additional considerations
when determining shear strains or analyzing data from
strain gage rosettes. The data-reduction relationships used
with rosettes are derived from the strain-transformation
equations [Equations (2), (3)], which are, in turn, based on
“small-strain” theory. The latter equations are precise only
for infinitesimal strains, but they are adequately accurate
for typical strain measurements on metal test objects where
the strains are usually less than 1 percent. With plastics
and composite materials, however, larger strains may be
encountered, and the rosette data-reduction relationships
can become increasingly inaccurate at strain levels greater
than 1 percent.

Another consideration is the uniformity of the strain field
under the area covered by the rosette, which is necessarily
greater than for a single grid of the same gage length.
For typical stress analysis purposes (i.e., to obtain the
stress at a point in a homogeneous material) the state of
strain under the rosette should be nearly uniform. When a
significantly nonuniform strain field is expected, the rosette
should be small enough relative to the strain gradient to
satisfactorily approximate measurement of the strain at a
point. This restriction does not apply when there is a valid
reason to integrate or average the strain over a specific
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area, as in the previously cited case of the losipescu shear-
test specimen. Similarly, for any strain measurements on
composite materials, the rosette dimensions should usually
be large relative to the distance between inhomogeneities
(reinforcing fiber spacing) to provide an accurate indication
of the macroscopic strain state.

Since the determination of shear strain is accomplished
by measuring two or three normal strains, it is always
necessary to make certain that the indicated shear strain
is unaffected by nonshearing load components such as
bending, twisting, or axial loads. This requirement can
usually be satisfied quite easily in the case of geometrically
symmetric test objects and specimens. With shear-test
specimens, for example, it is imperative that strain gage
rosettes be installed on both sides of the specimen at
corresponding points. When the rosettes are connected in
the Wheatstone bridge circuit as indicated in Figure 10,
strains due to out-of-plane bending or twisting are canceled
within the bridge circuit. Cancellation of undesired strain
components within the Wheatstone bridge circuit is a
widely applicable technique, and standard practice in the
technology of strain gage based transducers (see Figures
7 and 8). However, the intrinsic capacity for removing
undesirable strain components through bridge circuits
should not be used in place of good load alignment.
Carried to the extreme, shear strains could theoretically
be extracted from even predominantly off-axis loading. To
achieve the best accuracy, however, it is always preferable
to load the test specimen through its centroidal axis.
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