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1.0 Introduction

A strain gage rosette is, by definition, an arrangement
of two or more closely positioned gage grids, separately
oriented to measure the normal strains along different
directions in the underlying surface of the test part.
Rosettes are designed to perform a very practical and
important function in experimental stress analysis. It can
be shown that for the not-uncommon case of the general
biaxial stress state, with the principal directions unknown,
three independent strain measurements (in different
directions) are required to determine the principal strains
and stresses. And even when the principal directions are
known in advance, two independent strain measurements
are needed to obtain the principal strains and stresses.

To meet the foregoing requirements, the Micro-
Measurements manufactures three basic types of strain
gage rosettes (each in a variety of forms):

e Tee: two mutually perpendicular grids.

e 45°-Rectangular: three grids, with the second and
third grids angularly displaced from the first grid by
45° and 90°, respectively.

*  60°-Delta: three grids, with the second and third grids
60° and 120° away, respectively, from the first grid.

Representative gage patterns for the three rosette types are
reproduced in Figure 1.

In common with single-element strain gages, rosettes
are manufactured from different combinations of grid
alloy and backing material to meet varying application

requirements. They are also offered in a number of gage
lengths, noting that the gage length specified for a rosette
refers to the active length of each individual grid within
the rosette. As illustrated in Figure 2, rectangular and
delta rosettes may appear in any of several geometrically
different, but functionally equivalent, forms. Guidance
in choosing the most suitable rosette for a particular
application is provided in Section 2.0, where selection
considerations are reviewed.
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Figure 2 — Geometrically different, but functionally
equivalent configurations of rectangular and delta rosettes.
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Figure 1 - Basic rosette types, classified by grid orientation: (a) tee; (b) 45°-rectangular; (c) 60° delta.
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Since biaxial stress states occur very commonly in machine
parts and structural members, it might be presumed that
half or so of the strain gages used in experimental stress
analysis would be rosettes. This does not seem to be the
case, however, and ten percent (or less) rosette usage may be
more nearly representative. To what degree this pattern of
usage reflects an inclination for on-site makeup of rosettes
from single-element gages, or simply an undue tendency to
assume uniaxiality of the stress state, is an open question.
Atany rate, neither practice can generally be recommended
for the accurate determination of principal strains.

It must be appreciated that while the use of a strain
gage rosette is, in many cases, a necessary condition
for obtaining the principal strains, it is not a sufficient
condition for doing so accurately. Knowledgeability in
the selection and application of rosettes is critical to their
successful use in experimental stress analysis; and the
information contained in this Tech Note is intended to help
the user obtain reliably accurate principal strain data.

2.0 Rosette Selection Considerations

A comprehensive guide for use in selecting Micro-
Measurements strain gages is provided in Reference 1. This
publication should first be consulted for recommendations
on the strain-sensitive alloy, backing material, self-
temperature-compensation number, gage length, and
other strain gage characteristics suitable to the expected
application. In addition to basic parameters such as the
foregoing, which must be considered in the selection of any
strain gage, two other parameters are important in rosette
selection. These are: (1) the rosette type — tee, rectangular,
or delta; and (2) the rosette construction — planar (single-
plane) or stacked (layered).

The tee rosette should be used only when the principal strain
directions are known in advance from other considerations.
Cylindrical pressure vessels and shafts in torsion are two
classical examples of the latter condition. However, care
must be exercised in all such cases that extraneous stresses
(bending, axial stress, etc.) are not present, since these
will affect the directions of the principal axes. Attention
must also be given to nearby geometric irregularities,
such as holes, ribs, or shoulders, which can locally alter
the principal directions. The error magnitudes due to
misalignment of a tee rosette from the principal axes are
given in Reference 2. As a rule, if there is uncertainty about
the principal directions, a three-element rectangular or
delta rosette is preferable. When necessary (and, using the
proper data-reduction relationships), the tee rosette can be
installed with its axes at any precisely known angle from the
principal axes; but greatest accuracy will be achieved by
alignment along the principal directions. In the latter case,
except for the readily corrected error due to transverse
sensitivity, the two gage elements in the rosette indicate the
corresponding principal strains directly.

Where the directions of the principal strains are unknown,
a three-element rectangular or delta rosette is always
required; and the rosette can be installed without regard
to orientation. The data-reduction relationships given in
Section 4.0 yield not only the principal strains, but also the
directions for the principal axes relative to the reference
grid (Grid 1) of the rosette. Functionally, there is little
choice between the rectangular and delta rosettes. Because
the gage axes in the delta rosette have the maximum
possible uniform angular separation (effectively 120°), this
rosette is presumed to produce the optimum sampling of
the underlying strain distribution. Rectangular rosettes
have historically been the more popular of the two,
primarily because the data-reduction relationships are
somewhat simpler. Currently, however, with the widespread
access to computers and programmable calculators, the
computational advantage of the rectangular rosette is
of little consequence. As a result of the foregoing, the
choice between rectangular and delta rosettes is more
apt to be based on practical application considerations
such as availability from stock, compatibility with the
space available for installation, convenience of solder tab
arrangement, etc.

All three types of rosettes (tee, rectangular, and delta)
are manufactured in both planar and stacked versions.
As indicated (for the rectangular rosette) in Figure 3, the

Planar

Figure 3 — Rectangular rosettes (of the same gage
length) in planar and stacked construction.
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planar rosette is etched from the strain-sensitive foil as
an entity, with all gage elements lying in a single plane.
The stacked rosette is manufactured by assembling and
laminating two or three properly oriented single-element
gages. When strain gradients in the plane of the test part
surface are not too severe, the normal selection is the
planar rosette. This form of rosette offers the following
advantages in such cases:

* Thin and flexible, with greater conformability to
curved surfaces;

e Minimal reinforcing effect;
* Superior heat dissipation to the test part;

e Available in all standard forms of gage construction,
and generally accepts all standard optional features;

*  Optimal stability;

e Maximum freedom in leadwire routing and
attachment.

The principal disadvantages of the planar rosette arise from
the larger surface area covered by the sensitive portion of
the gage. When the space available for gage installation
is small, a stacked rosette may fit, although a planar one
will not. More importantly, where a steep strain gradient
exists in the surface plane of the test part, the individual
gage elements in a planar rosette may sense different strain
fields and magnitudes. For a given active gage length, the
stacked rosette occupies the least possible area, and has
the centroids (geometric centers) of all grids lying over
the same point on the test part surface. Thus, the stacked
rosette more nearly approaches measurement of the strains
at a point. Although normally a trivial consideration, it can
also be noted that all gages in a stacked rosette have the
same gage factor and transverse sensitivity, while the grids
in a planar rosette will differ slightly in these properties,
due to their different orientations relative to the rolling
direction of the strain-sensitive foil. The technical data
sheet accompanying the rosettes fully documents the
separate properties of the individual grids.

It should be realized, however, that the stacked rosette
is noticeably stiffer and less conformable than its planar
counterpart. Also, because the heat conduction paths for
the upper gridsin a stacked rosette are much longer, the heat
dissipation problem may be more critical when the rosette
is installed on a material with low thermal conductivity.
Taking into account their poorer heat dissipation and their
greater reinforcement effects, stacked rosettes may not be
the best choice for use on plastics and other nonmetallic
materials. A stacked rosette can also give erroneous strain
indications when applied to thin specimen in bending, since
the grid plane of the uppermost gage in a three-gage stack
may be as much as 0.0045 in [0.11 mm] above the specimen
surface. In short, the stacked rosette should ordinarily
be reserved for applications in which the requirement for
minimum surface area dictates its selection.

3.0 Gage Element Numbering

“Numbering”, as used here, refers to the numeric (or
alphabetic) sequence in which the gage elements in a
rosette are identified during strain measurement, and
for substitution of measured strains into data-reduction
relationshipssuch asthose givenin Section4.0. Contrarytoa
widely held impression, the subject of gage numbering is not
necessarily a trivial matter. It is, in fact, basic to the proper,
and complete, interpretation of rosette measurement.>
With any three-element rosette, misinterpretation of the
rotational sequence (CW or CCW), for instance, can lead
to incorrect principal strain directions. In the case of the
rectangular rosette, an improper numbering order will
produce completely erroneous principal strain magnitudes,
as well as directions. These errors occur when the gage
user’s numbering sequence differs from that employed in
the derivation of the data-reduction relationships.

To obtain correct results using the data-reduction
relationships provided in Section 4.0 (and in the Appendix),
the grids in three-element rosettes must be numbered in
a particular way. It is always necessary in a rectangular
rosette, forinstance, that grid numbers 1 and 3 beassigned to
two mutually perpendicular grids. Any other arrangement
will produce incorrect principal strains. Following are
the general rules for proper rosette numbering. With a
rectangular rosette, the axis of Grid 2 must be 45° away
from that of Grid 1; and Grid 3 must be 90 deg away, in the
same rotational direction. Similarly, with a delta rosette,
the axes of Grids 2 and 3 must be 60° and 120° away,
respectively, in the same direction from Grid 1.

In principle, the preceding rules could be implemented
by numbering the grids in either the clockwise or
counterclockwise direction, as long as the sequence is
correct. Counterclockwise numbering is preferable,
however, because it is consistent with the usual engineering
practice of denoting counterclockwise angular measure-
ment as positive in sign. The gage grids in all Micro-
Measurements general-purpose, three-element planar
rosettes (rectangular and delta) are numerically identified,
and numbered in the counterclockwise direction.*
Examples of the grid numbering for several representative
rosette types are illustrated in Figure 4. At first glimpse, it
might appear that gage patterns (b) and (c) are numbered
clockwise instead of counterclockwise. But when these
patterns are examined more closely, and when the axis
of Grid 2 is transposed across the grid-circle diameter to
satisfy the foregoing numbering rules, it can be seen that
the rosette numbering is counterclockwise in every case.

* Micro-Measurements also supplies special-purpose planar rectangu-
lar rosettes designed exclusively for use with the hole-drilling method
of residual stress analysis. Since these rosettes require different
data-reduction relationships, procedures, and interpretation, they
are numbered clockwise to distinguish them from general-purpose
rosettes.
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Figure 4 — Counterclockwise numbering of grids
in Micro-Measurements general-purpose
strain gage rosettes (see text).

Micro-Measurements stacked rosettes are not numbered,
as a matter of manufacturing economics. The user should
number the gages in stacked rosettes according to the rules
given here and illustrated in Figures 2 and 4.

4.0 Principal Strains and Directions
from Rosette Measurements

The equations for calculating principal strains from three
rosette strain measurements are derived from what is
known as a “strain-transformation” relationship. As
employed here in its simplest form, such a relationship
expresses the normal strain in any direction on a test
surface in terms of the two principal strains and the angle
from the principal axis to the direction of the specified
strain. This situation can be envisioned most readily with
the aid of the well-known Mohr’s circle for strain, as shown
in Figure 5** It can be seen from Figure 5a (noting that the
angles in Mohr’s circle are double the physical angles on
the test surface) that the normal strain at any angle 6 from
the major principal axis is simply expressed by:

ep+ey €p—&
==

20 1
7 cos (I)

€o

** The Mohr’s circle in Figure 5 is constructed with positive shear
strain plotted downward. This is done so that the positive rotational
direction in Mohr’s circle is the same (CCW) as for the rosette, while
maintaining the usual sign convention for shear (i.e., positive shear
corresonds to a reduction in the initial right angle at the origin of
the X-Y axes as labeled in Figure 5b).
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Figure 5 - Strain transformation from the principal strains to the
strain in any direction: (a) gin terms of principal strains &, and
&g, @s shown by Mohr’s circle for strain; (b) rectangular rosette
installed on a test surface, with Grid 1 at the arbitrary angle 6

from the major principal axis; (c) axes of the rectangular rosette

superimposed on Mohr’s circle for strain.
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Figure 5b represents a small area of the test surface, with
a rectangular rosette installed, and with the reference grid
(#1) oriented at 6 degrees from g,. Mohr’s circle, with the
axes of the rosette superimposed, is shown in Figure 5c.

By successively substituting into Equation (1) the angles for
the three grid directions, the strain sensed by each grid can
be expressed as follows:

Ept+ey Ep—¢€

81=% P2 P70 cos 26 (2a)
ept+ey Ep—gg

£ = % L Leos2(6+45°)  (p)
Ep+¢€ P— €9

&= % L _Qeos 2(6+90°) 20

When the rosette is installed on a test part subjected to
an arbitrary strain state, the variables on the right-hand
side of Equations (2) are unknown. But the strains g, &
and &5 can be measured. Thus, by solving Equations (2)
simultaneously for the unknown quantities &p, &,, and 6,
the principal strains and angle can be expressed in terms of
the three measured strains. Following is the result of this
procedure:

g +e 2
€pg = 1 : +_\/ (& - ’32 +(e-8) 0
0= ltan,l & — 282 + &
2 g -8 @)

If the rosette is properly numbered, the principal strains
can be calculated from Equation (3) by substituting the
measured strains for g, & and &. The plus and minus
alternatives in Equation (3) yield the algebraically
maximum and minimum principal strains, respectively.
Unambiguous determination of the principal angle from
Equation (4) requires, however, some interpretation,
as described in the following. To begin with, the angle
0 represents the acute angle from the principal axis to
the reference grid of the rosette, as indicated in Figure
5. In the practice of experimental stress analysis, it is
somewhat more convenient, and easier to visualize, if this
is reexpressed as the angle from Grid 1 to the principal axis.
To change the sense of the angle requires only reversing the
sign of Equation (4). Thus:

b =—0- %ml(m) )

& &

The physical direction of the acute angle given by either
Equation (4) or Equation (5) is always counterclockwise
if positive, and clockwise if negative. The only difference
is that 6 is measured from the principal axis to Grid 1,
while ¢ is measured from Grid 1 to the principal axis.
Unfortunately, since tan 2¢ =tan 2(¢ + 90°), the calculated
angle can refer to either principal axis; and hence the
identification in Equation (5) as ¢p o. This ambiguity
can readily be resolved (for the rectangular rosette) by
application of the following simple rules:

(@) if g > &, then Ppo = Pp
(b) if & < &, then ¢p » = ¢y
(c) if & = gyand &, < g, then ¢p , = Pp = —45°
(d) if & = & and & > g, then ¢p , = ¢p = +45°

(e) if & = & = &, then ¢, is indeterminate (equal
biaxial strain).

The reasoning which underlies the preceding rules becomes
obvious when a sketch is made of the corresponding Mohr’s
circle for strain, and the rosette axes are superimposed as
in Figure 5c. A similar technique for assuring correct
interpretation of the angle is given in the form of a step-by-
step algorithm in Reference 3.

The preceding development has been applied to the
rectangular rosette, but the same procedure can be used
to derive corresponding data-reduction equations for the
delta rosette shown in Figure 6. When grid angles 6, 6 +
60°, and 6+ 120° are successively substituted into Equation
(1), the resulting three equations can again be solved
simultaneously for the principal strains and angle. Thus,
for the delta rosette:

+e,+ey V2
spQ—gl 832 E A \/ +(er-&) +(e5-)
(6)
0=1ian! (M] %)
2 281 —& —&

As in the case of Equation (4), the angle 6 calculated from
Equation (7) refers to the angular displacement of Grid 1
from the principal axis. The sense of the angle can again be
changed by reversing its sign to give the angle from Grid 1
to a principal axis:

V3 (e 83)} ®)

|
=—-0=—tan
Or0 2 [281—82—83
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Figure 6 — Delta rosette: (a) installed on a test surface,
with Grid 1 at the angle of 8 from the major principal strain
direction; (b) rosette grid axes superimposed on Mohr’s
circle for strain. Note that Grid 2 is to be viewed as +60°
(CCW) from Grid 1 in the rosette, and +120° in Mohr’s circle.

In every case [Equations (4), (5), (7), and (8)], the angles
are to be interpreted as counterclockwise if positive, and
clockwise if negative.

Equation (8) embodies the same ambiguity with respect to
the tan 2¢ and tan 2(¢ + 90°) as Equation (5). As before, the
ambiguity can easily be resolved (for the delta rosette) by
considering the relative magnitudes (algebraically) among
the individual strain measurements; namely:

(a) ifg > £15 , then ¢p o = ¢p
(b) if & <2258 then ¢p = @y
© ife; =275 and e, < g, then ¢y = 9p =—45°

d) ifg = & ;83, and &, > &, then ¢p 5 = ¢pp = +45°

(3) if & =&, = &; then ¢p , is indeterminate
(equal biaxial strain)

When the principal angle is calculated automatically by
computer from Equation (5) or Equation (8), it is always
necessary of course, to avoid the condition of division by
zero if € = & with a rectangular rosette, or g = (&, + &)/2
with a delta rosette. For this reason, the computer should
be programmed to perform the foregoing (c) and (d) tests,
in each case, prior to calculating the arc-tangent.

Once the principal strains have been determined from
Equation (3) or Equation (6), the strain state in the surface
of the test part is completely defined. If desired, the
maximum shear strain can be obtained directly from:

™MAX = €p— €& ©)]

Intuitive understanding of the strain state can also be
enhanced by sketching the corresponding Mohr’s circle,
approximately to scale. In Equations (3) and (6), the first
term represents, in each case, the distance from the origin
to the center of the circle, and the second term represents
the radius, or yax- With the angle ¢ calculated, further
insight can be gained by superimposing the rosette grid
axes on the Mohr’s circle, as in Figures 5¢ and 6b.

5.0 Principal Stresses from Principal Strains

As previously noted, a three-element strain gage rosette
must be employed to determine the principal strains in
a general biaxial stress state when the directions of the
principal axes are unknown. The usual goal of experimental
stress analysis, however, is to arrive at the principal stresses,
for comparison with some criterion of failure. With the
strain state fully established as described in Section 4.0,
the complete state of stress (in the surface of the test part)
can also be obtained quite easily when the test material
meets certain requirements on its mechanical properties.
Since some types of strain gage instrumentation, such as
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our System 6000, calculate both the principal strains and
the principal stresses, the following material is provided as
background information.

If the test material is homogeneous in composition, and is
isotropic in its mechanical properties (i.e., the properties
are the same in every direction), and if the stress/strain
relationship is linear, with stress proportional to strain,
then the biaxial form of Hooke’s law can be used to convert
the principal strains into principal stresses. This procedure
requires, of course, that the elastic modulus (£) and
Poisson’s ratio (v) of the material be known. Hooke’s law
for the biaxial stress state can be expressed as follows:

Op= 1—Ev2 (SP +st) (10a)
Op = %(eQ + vep) (10b)

The numerical values of the principal strains calculated
form Equation (3) or Equation (6) can be substituted into
equations (10), along with the elastic properties, to obtain
the principal stresses. As an alternative, Equation (3)
or Equation (6) depending on the rosette type) can be
substituted algebraically into Equations (10) to express the
principal stresses directly in terms of the three measured
strains and the material properties. The results are as
follows:

Rectangular:

Grp- E[el+£3+\/_\/£1 e 3233)2} an

1-v  1+v

Delta:
& t& +€3 +
_E| 1-v
oro=3| 55 S (b)

\/(51 *52)2 +(82*83)2 +(g5-¢)

1+v

When the test material is isotropic and linear-elastic in
its mechanical properties (as required for the validity of
the preceding strain-to-stress conversion), the principal
stress axes coincide in direction with the principal strains.
Because of this, the angle from Grid 1 of the rosette to

the principal stress direction is given by Equation (5)
for rectangular rosettes, and by Equation (8) for delta
rosettes.

6.0 Errors, Corrections, and Limitations

The obvious aim of experimental stress analysis is to
determinethesignificantstressesinatestobjectasaccurately
as necessary to assure product reliability under expected
service conditions. As demonstrated in the preceding
sections of this Tech Note, the process of obtaining the
principal stresses involves three basic, and sequential, steps:
() measurement of surface strains with a strain gage rosette;
(2) transformation of measured strains to principal strains;
and (3) conversion of principal strains to principal stresses.
Each step in this procedure has its own characteristic error
sources and limits of applicability; and the stress analyst
must carefully consider these to avoid potentially serious
errors in the resulting principal stresses.

Of first importance is that the measured strains be as free
as possible of error. Strain measurements with rosettes
are subject, of course, to the same errors (thermal output,
transverse sensitivity, leadwire resistance effects, etc.) as
those with single-element strain gages. Thus, the same
controlling and/or corrective measures are required to
obtain accurate data. For instance, signal attenuation
due to leadwire resistance should be eliminated by shunt
calibration®, or by numerically correcting the strain data for
the calculated attenuation, based on the known resistances
of the leadwires and strain gages.

Because at least one of the gage grids in any rosette will in
every case be subjected to a transverse strain which is equal
toorgreaterthanthestrainalongthe grid axis, consideration
should always be given to the transverse-sensitivity error
when performing rosette data reduction. The magnitude of
the error in any particular case depends on the transverse-
sensitivity coefficient (K,) of the gage grid, and on the
ratio of the principal strains (¢p/€y). In general, when
K,< 1%, the transverse-sensitivity errorissmall enough to be
ignored. However, at larger values of K,, depending on the
required measurement accuracy, correction for transverse
sensitivity may be necessary. Detailed procedures, as well
as correction equations for all cases and all rosette types,
are given in Reference 5.

When strain measurements must be made in a variable
thermal environment, the thermal output of the strain gage
can produce rather large errors, unless the instrumentation
can be zero-balanced at the testing temperature, under
strain-free conditions. In addition, the gage factor of the
strain gage changes slightly with temperature. Reference
6 provides a thorough treatment of errors due to thermal
effects in strain gages, including specific compensation and
correction techniques for minimizing these errors.
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After making certain that strain measurement errors such
as the foregoing have been eliminated or controlled to the
degree feasible, attention can next be given to possible
errors in the strain-transformation procedure for obtaining
the principal strains. A potentially serious source of error
can be created when the user attempts to make up a rosette
on the specimen from three conventional single-element
gages. Theerror is caused by misalignment of the individual
gages within the rosette. If, for example, the second and
third gages in a rectangular rosette configuration are not
accurately oriented at 45° and 90°, respectively, from the
first gage, the calculated principal strains will be in error.

The magnitude of the error depends, of course, on the
magnitude (and direction) of the misalignment; but it
also depends on the principal strain ratio, /€y, and on
the overall orientation of the rosette with respect to the
principal axes. For certain combinations of principal
strain ratio and rosette orientation, 5-degree alignment
errors in gages 2 and 3 relative to Gage 1 can produce an
error of 20 percent or more in one of the principal strains.

Since it is very difficult for most persons to install a small
strain gage with the required precisionin alignment, the user
is well-advised to employ commercially available rosettes.
The manufacturing procedures for Micro-Measurements
strain gage rosettes are such that errors due to grid
alignment within the rosette need never be considered. For
those cases in which it is necessary, for whatever reason, to
assemble a rosette from single-element gages, extreme care
should be exercised to obtain accurate gage alignment.
And when the principal strain directions can be predicted
in advance, even approximately, alignment of Gage 1 or
3 in a rectangular rosette, or alignment of any gage in a
delta rosette, with a principal axis, will minimize the error
in that principal strain caused by inter-gage misalignment.

Thestrain-transformation relationships and data-reduction
equations given in Section 4.0 assume a uniform state of
strain at the site of the rosette installation. Since the rosette
necessarily covers a finite area of the test surface, severe
variations in the strain field over this area can produce
significant errors in the principal strains — particularly
with planar rosettes.” For this type of application, the
stacked rosette is distinctly superior; both because it
covers a much smaller area (for the same gage length), and
because the centroids of all three grids lie over the same
point on the test surface.

The requirements for a homogeneous material and
uniform strain state can be (and are) relaxed under certain
circumstances. A case in point is the use of strain gage
rosettes on fiber-reinforced composite materials. If the
distance between inhomogeneities in the material (i.e.,
fiber-to-fiber spacing) is small compared to the gage length
of the rosette, each grid will indicate the “macroscopic” or
average strain in the direction of its axis. These measured

strains (after the usual error corrections) can be substituted
into Equation (3) or Equation (6) to obtain the macroscopic
principal strains for use in the stress analysis of test objects
made from composite materials.® As noted later in this
section, however, Equations (10)-(12) cannot be used for
this purpose.

There is an additional limitation to the strain-transformat-
ion relationship in Equation (1) which, although not
frequently encountered in routine experimental stress
analysis, should be noted. The subject of the strain
distribution about a point, as universally treated in
handbooks and in mechanics of materials textbooks, is
developed from what is known as “infinitesimal-strain”
theory. That is, in the process of deriving relatively simple
relationships such as Equation (1), the strain magnitudes
are assumed to be small enough so that normal- and
shear-strain approximations of the following types can be
employed without introducing excessive error:

e+er=e (13)
siny =tany =y (14)

Although often unrecognized, these approximations
are embodied in the equations used throughout the
contemporary practice of theoretical and experimental
stress analysis (where strain transformation is involved).
This includes the concept of Mohr’s circle for strain,
and thus all of the equations in Section 4.0, which are
consistent with the strain circle. Infinitesimal-strain theory
has proven highly satisfactory for most stress analysis
applications with conventional structural materials, since
the strains, if not truly “infinitesimal”, are normally
very small compared to unity. Thus, for a not-untypical
working strain level of 0.002 (2000u¢), the error in ignoring
€2 compared to £is only about 0.2 percent.

However, strain gage rosettes are sometimes used in the
measurement of much larger strains, as in applications
on plastics and elastomers, and in post-yield studies of
metal behavior. Strain magnitudes greater than about 0.01
(10 000u€) are commonly referred to as “large” or “finite”,
and, for these, the strain-transformation relationship in
Equation (1) may not adequately represent the actual
variation in strain about a point. Depending on the strain
magnitudes involved in a particular application, and on
the required accuracy for the principal strains, it may be
necessary to employ large-strain analysis methods for
rosette data reduction.’

The final step in obtaining the principal stresses is the
introduction of Hooke’s law [Equations (10)] for the biaxial
stress state. To convert principal strains to principal
stresses with Hooke’s law requires, of course, that the
elastic modulus and Poisson’s ratio of the test material
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be known. Since the calculated stress is proportion to E,
any error in the elastic modulus (for which a 3 to 5 percent
uncertainty is common) is carried directly through to the
principal stress. An error in Poisson’s ratio has a much
smaller effect because of the subordinate role of v in the
relationship.

It is also necessary for the proper application of Hooke’s
law that the test material exhibit a linear relationship
between stress and strain (constant E) over the range
of working stresses. There is normally no problem in
satisfying this requirement when dealing with common
structural materials such as the conventional steel and
aluminum alloys. Other materials (e.g., some plastics,
cast iron and magnesium alloys, etc.) may, however, be
distinctly nonlinear in their stress/strain characteristics.
Since the process of transformation from measured strains
to principal strains is independent of material properties,
the correct principal strains in such materials can be
determined from rosette measurements as described in
this Tech Note. However, the principal strains cannot be
converted accurately to principal stresses with the biaxial
Hooke’s law if the stress/strain relationship is perceptibly
nonlinear.

A further requirement for the valid application of Hooke’s
law is that the test material be isotropic in its mechanical
properties (i.e., that the elastic modulus and Poisson’s
ratio be the same in every direction). Although severely
cold-worked metals may not be perfectly isotropic, this
deviation from the ideal is commonly ignored in routine
experimental stress analysis. In contrast, high-performance
composite materials are usually fabricated with directional
fiber reinforcement, and are thus strongly directional
(orthotropic or otherwise anisotropic) in their mechanical
properties. Hooke’s law as expressed in Equations (10) is
not applicable to these materials; and special “constitutive”
relationships are required to determine principal stresses
from rosette strain measurements.®
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Appendix

Derivation of Strain-Transformation Relationship
[Equation (1) in text] from Deformation Geometry

Consider a small area of a test surface, as sketched in
Figure A-1. The line O-P, of length L, and at the angle 6
from the X axis, is scribed on the surface in the unstrained
state. When uniform principal strains €, and &, are applied
in the directions of the X and Y axes, respectively, the point
P moves to P’ as a result of the displacements AX and AY
(greatly exaggerated in the sketch).

It is evident from the figure that:
AX = gp (L cos 6) (A-D)
AY =g, (L sin 6) (A-2)

It can also be seen (Figure A-2), by enlarging the detail in
the vicinity of points P and P’, that for small strains:

AL =~ AX cos 6 + AY sin 6 (A-3)
Substituting from Equations (A-1) and (A-2),

AL = L (gp cos® 6 + g, sin” 6) (A-3)

&= % =¢&p cos29+£Q sin’ @ (A-5)

0

But,

cos’ 6 = %(1 +¢0s20)

sin’@ = %(1 —c0s26)

After substituting the above identities,

Ep+ey Ep—&
=—=+

& 7 TCOS 26 (A-6)

Alternate Data Reduction Equations

In the extensive technical literature dealing with strain
gage rosettes, the user will often encounter data-reduction
relationships which are noticeably different from one
another, and from those in the body of this Tech Note. As
a rule, these published equations yield the same results,
and differ only in algebraic format — although proving
so in any given case may be rather time consuming.
Since certain forms of the equations may be preferred for
mnemonic reasons, or for computational convenience,
several alternative expressions are given here. All of the
following are equally correct when the gage elements in the
rosette are numbered as described in this Tech Note.

q P
€q
\0

N 7/
~—/
\< (]
\ . N
o}
R aaee =
€p

Figure A-1

Figure A-2
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Rectangular Rosette:

ero=2t8 1 (o -e) [0 -(a+e)] (A7)
T \/[(el &) +e-a) |2 (A-8)
epo=Ct\(C-a) +(C-&) (A-9)
where: c=A42% (A-9)

Delta Rosette:

ero- g+ .932 + & i\/[za _(? + 83):|2 +%(82_ 83)2 (A-10)

erg= 2218 Pl o) +e-a) a9 @

sP’Q:Ci\/Z[(C781)2+(C7 &) +(C-&)']/3 (A-12)
where: c=Atrs

Cartesian Strain Components from Rosette Measurements

It is sometimes desired to obtain the Cartesian components of strain (g€y, &, and yyy) relative to a specified set of X-Y
coordinate axes. This need can arise, for example, when making strain measurements on orthotropic composite materials.
The Cartesian strain components are also useful when calculating principal strains from rosette data using matrix
transformation methods.*

When the X axis of the coordinate system coincides with the axis of the reference grid (Grid 1) of the rosette, the Cartesian
components of strain are as follows:

Rectangular Rosette:

Y
ey=¢ 3
2
Yyy =26 (g + &) 1

X

* Milner, R.R., “A Modern Approach to Principal Stresses and Strains”, Strain, November, 1989, pp.135-138.




TN-515 VISHAY

PRECISION
% crour

=M:=M-:= Micro-Measurements

Delta Rosette:

€x =8
ey =[2(e;+85)-5]/3

Yxy =2(£2 —“33)/\/§

The foregoing assumes in each case that the gage elements in the rosette are numbered counterclockwise as indicated. When
the calculated yyy is positive in sign, the initial right angle at the origin of the X-Y coordinate system is decreased by the
amount of the shear strain.
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